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Abstract—All current data on the Jurassic and Cretaceous climates of Siberia based on isotope, paleontological,
and lithological proxies are summarized. The late Pliensbachian cooling episode, early Toarcian warming,
promptly replaced by long-term Middle Jurassic cooling at the end of the Toarcian, and a long-term warm inter-
val in the Late Jurassic are clearly recorded. From the end of the Ryazanian, a gradual cooling episode began,
which apparently continued throughout the Early Cretaceous except for a brief warming episode in the early
Aptian. At the beginning of the Late Cretaceous, the climate became warmer; the peak of warming is recorded
at the Cenomanian–Turonian boundary. Then, the middle–late Turonian was marked by a relatively cold epi-
sode. Later, in the Coniacian–Campanian, the climate warmed again, but at the end of the Campanian another
cooling episode occurred. New findings of marine reptiles are described from the Toarcian, Kimmeridgian, Vol-
gian, and Santonian-Campanian deposits of north of Eastern Siberia. All existing records of marine reptiles
known from the Jurassic and Cretaceous of Siberia are revised, and all the findings (from 51 localities) are posi-
tioned in relation to paleolatitudes. It is established that the majority of occurrences of these fossils were within
the polar paleolatitudes (70°–87°). We found no direct correlation between climate fluctuations and the distri-
bution of these organisms. Taking into account the newest data showing that representatives of the majority of
Jurassic and Cretaceous large groups of marines reptiles were able to maintain a more or less constant body tem-
perature and were also able to undertake large-scale seasonal migrations, it is reasonable to be cautious in inter-
preting the presence of remains of these animals as indicators of a warm climate.
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INTRODUCTION
Marine reptile remains have been known from the

Mesozoic of Siberia for almost 150 years (the first find
was made by A.L. Czekanowski’s expedition in 1875
(Jakowlew, 1903)); however, they remain insuffi-
ciently studied. Most of these finds are mentioned
only in various publications on regional geology and
stratigraphy, and only a few specimens from the Juras-
sic of the Lena River basin (Jakowlew, 1903; Menner,
1948) and Lower Cretaceous of the Anabar River (Efi-
mov, 2006; Efimov and Efimov, 2011) and Uyedi-
neniya Island (Ryabinin, 1939) have been described
and illustrated. At the same time, in the studies of the
Mesozoic climates (primarily high-latitude), the pres-
ence of marine reptile remains, as a rule, served as a
proxy for warm-water conditions (Hallam, 1985).
Data on the fossil remains of these organisms in vari-

ous horizons of the Mesozoic of Siberia were inter-
preted in the same way (Golbert, 1979, 1983, 1987;
Golbert and Polyakova, 1966; Golbert et al., 1968,
1978, 1984; Knyazev et al., 1991; Paleoklimaty…, 1977).
However, in recent years, newly obtained data have
cast doubt on the value of marine reptiles for recon-
struction of paleotemperature.

On one hand, various reptile assemblages have
been described from high latitudes and, judging by the
abundance of glendonite, apparently cold-water upper
Aptian deposits of Australia (Kear, 2005, 2006a,
2006b) and Arctic Canada (Vavrek et al., 2014).

On the other hand, it has been shown that at least
some representatives of these groups were able to
maintain a constant body temperature (Bernard et al.,
2010; Fleischle et al., 2018; Harrell et al., 2016;
Motani, 2010;  Wintrich et al., 2017a, 2017b).
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And finally, there is growing evidence that many
Jurassic and Cretaceous reptiles had wide (including
bipolar) ranges and were likely to have been able to
undertake significant seasonal migrations comparable
to those of modern cetaceans and some fishes (Zverkov
et al., 2015).

Extensive materials on the paleothermometry of
the Jurassic and Cretaceous Siberian seas were
obtained mainly in the 1960s–1970s, when domestic
researchers began studying the oxygen isotope compo-
sition of belemnite rostra (Berlin et al., 1967; Naidyn
and Teis, 1976;  Naidyn et al., 1966; Teis et al., 1968,
1978). In parallel with these works, methods were
developed for paleotemperature reconstruction based
on the Ca/Mg ratio in mollusk shells (Berlin and Kha-
bakov, 1966; Berlin et al., 1970), while the results of
studying the same belemnite samples by both methods
showed fairly good convergence (Berlin and Khaba-
kov, 1970).

At the same time, the first attempts were made to
clarify changes in the Mesozoic climate of Siberia using
paleobotanical data (Golbert and Polyakova, 1966;
Iljina, 1969, 1985; Kiritchkova, 1985; Teslenko, 1963,
1964; Vakhrameev, 1964, 1987, 1991), including data
on the relative content of Classopollis pollen in the
spore-pollen assemblages to detect warming and cool-
ing episodes (Vakhrameev, 1978, 1982).

Along with temperature variations, paleobotani-
cal data allowed the degree of climate aridity to be
identified.

In the late 1970s, Kaplan (1977, 1978, 1980) sum-
marized the distribution of glendonites (calcite pseu-
domorphs after the metastable mineral ikaite, indica-
tive of cold-water environments) in the Jurassic and
Cretaceous deposits of Siberia, and using this, conclu-
sions were drawn about climate change in the region
under consideration. Various data on the climate of
Jurassic and Cretaceous Siberia obtained in the
1960s–1980s (primarily, data on f lora, facies and pale-
othermometry) were summarized by Golbert (1987).

Over the next 30 years, despite the appearance of
extensive new material, no further such reviews were
published, with the exception of small papers by
Zakharov (1994, 1997, 2002) and Zakharov et al. (2010).

It should be noted that it is not always possible to
directly use data from the 1960s–1980s, either because
of changes in the suitability of samples for isotopic
studies or because of substantial revision of the age of
some stratigraphic intervals in recent years, primarily
in the Middle Jurassic.

In recent years, new isotopic data have been
obtained, allowing us to refine our understanding of
the change in water temperature in the Arctic in the
Late Jurassic–Cretaceous (Dzyuba et al., 2013, 2018;
Nunn, 2007; Price and Mutterlose, 2004; Žák et al.,
2011; Zakharov et al., 2011, 2014; Dzyuba et al., 2013,
2018). However, it should be noted that isotopic pale-
othermometry data can indicate trends, not specific
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temperature values. This is especially significant for
high-latitude sections. First, the isotopic composition
of oxygen is significantly affected by f luctuations in
water salinity, which are very likely in Siberian shal-
low-water epicontinental basins and include those that
cannot be identified by changes in faunas (for exam-
ple, similar in scale to those established in the Late
Jurassic of the Central Russian Sea; see Wierzbowski
et al., 2018). Secondly, the annual mean seawater oxy-
gen isotope ratio in high latitudes of the Northern
Hemisphere differs substantially from the mean oce-
anic value, being enriched in the lighter oxygen iso-
tope (LeGrande and Schmidt, 2006). The same pat-
terns of oxygen isotope ratios in the high latitude
basins of the Late Mesozoic are established as a result
of modeling (Zhou et al., 2008) and are suggested by a
study of the oxygen isotope ratios in belemnite rostra
and glendonites (Price and Nunn, 2010). For the Late
Cretaceous, promising paleoclimatic reconstructions
were obtained using data on the morphology of fossil
angiosperm leaves (Herman, 2004; Herman and
Spicer, 1997; Herman et al., 2002;  Spicer and Her-
man, 2010). Thanks to new findings, it was possible to
clarify the characteristics of the stratigraphic and geo-
graphical distribution of Jurassic and Cretaceous glen-
donites in the Arctic (Morales et al., 2017;  Rogov and
Zakharov, 2010; Rogov et al., 2017; Zakharov et al.,
2010). Although some of the factors controlling the
glendonite distribution remain a subject of debate
(Morales et al., 2017; Qu et al., 2017; Stockmann et al.,
2018; Zhou et al., 2015), most authors agree upon their
contiguity with cold-water environments, and that the
parent mineral for the formation of glendonite is ikaite
(Grasby et al., 2017; Rogov et al., 2017; Vickers et al.,
2018). In addition to the recent data on paleoclimates,
over the past 10 years, M.A. Rogov collected numer-
ous bones of marine reptiles from the Mesozoic
deposits of various ages in the north of Eastern Siberia.

Thus, the emergence of new data and the need for
a critical review of previously published results deter-
mine the main objectives of this study:

(1) summary of existing data on the Jurassic and
Cretaceous climates of Siberia;

(2) a review of available data on marine reptile
occurrences in the Jurassic and Cretaceous deposits of
Siberia with a description of new finds1;

(3) comparison of the data obtained on the Jurassic
and Cretaceous climates with the distributional pat-
terns of marine reptiles.

The age of some stratigraphic intervals, primarily
in the Middle Jurassic and Lower Cretaceous, is cur-
rently debated owing to the complexity of the Boreal-

1 The new finds described in this paper are housed in the collec-
tions of the Saratov State Technical University (Saratov, speci-
men numbers begin with “SSTU”), the TsNIGR Museum (St.
Petersburg, specimen numbers begin with “TsNIGR”), and the
Geological Institute of the Russian Academy of Sciences (Mos-
cow, specimen numbers begin with “GIN”).
 Vol. 27  No. 4  2019
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Tethyan correlation. For the Jurassic, the boundaries
of the substages mainly follow Zakharov and Rogov
(2008); only for the Aalenian in this work is a twofold
division used, which is traditional for Siberia (Shury-
gin et al., 2011). The boundary of the lower and upper
Bajocian is traditionally drawn at the base of the Bore-
alis Zone. In recent years, speculations have been
made about the Early Bajocian age of ammonite zones
located below the Arcticus Zone (de Lagausie and
Dzyuba, 2017; Meledina, 2014), but because they are
based on indirect evidence, they remain, in our view,
insufficiently substantiated.

The subdivision of the lower Cretaceous is
accepted mainly according to Baraboshkin (2004),
taking into account the data for the Subpolar Urals:
the Bojarkensis Zone, which has traditionally been
considered to be Hauterivian, is assigned to the termi-
nal part of the Valanginian (Nunn et al., 2010),
although it cannot be ruled out that its upper part may
already be of Hauterivian age. The ammonite-free
interval, which in Siberia contains Buchia sublaevis,
whose Hauterivian age is based on data from Califor-
nia (Zakharov, 2015) and the East European Platform
(Zakharov, 1981), is also assigned to the lower
Hauterivian. The Upper Cretaceous is subdivided
according to the data of Zakharov et al. (2002, 2003).

AN OVERVIEW OF THE JURASSIC 
AND CRETACEOUS CLIMATES OF SIBERIA

Early Jurassic

According to palynological data, in the north of
Eastern Siberia at the beginning of the Jurassic, there
was a humid, warm-temperate seasonal climate. The
Early Jurassic f lora in Western and Eastern Siberia was
relatively uniform, dominated by conifers and Gink-
goales with a significant content of Bennettitales (Ily-
ina, 1969). In the Vilyui River basin, there have been
records of representatives of a f lora characteristic of
the Indo-European region. Spores of sphagnum
mosses Stereisporites are used as proxies for the Early
Jurassic climate. Like other sphagnum mosses, these
plants, apparently, needed abundant stagnant mois-
ture and relatively moderate temperatures (Ilyina,
1985). Analysis of the distribution of spores of Stereis-
porites in the Jurassic of Siberia showed that sphagnoid
plants during this period were particularly well repre-
sented during episodes of a humid warm-temperate
climate (Sinemurian–Pliensbachian, Aalenian, Bajo-
cian) and disappeared during periods of sharp warm-
ing (early Toarcian) and aridization (Ilyina, 1985).
The genus Sterirosorites was the most common in
Siberia in the late Pliensbachian, and it is also found in
large numbers in nonmarine sediments of this age,
common in the south of Siberia (Ilyina, 1985).

Cooling is registered for the late Pliensbachian. It
was accompanied by the disappearance of representa-
tives of Subtethyan and Subboreal genera of bivalves,
STRATIGRAPHY AND G
foraminifers, and ostracodes from benthic communi-
ties (Nikitenko and Shurygin, 1994; Zakharov, 1994;
Zakharov et al., 2006). The late Pliensbachian of East-
ern Siberia is also characterized by an extremely wide
distribution of glendonites, which have been recorded
repeatedly both in natural outcrops and in the bore-
hole cores (Rogov, 2015) (Fig. 1). Levels with the
upper Pliensbachian glendonites extend for hundreds
and thousands of kilometers and were used as marker
horizons for geological mapping (Kirina, 1966). In the
same stratigraphic interval, dropstones have been
recorded (Suan et al., 2011), although some of them
are not related to ice rafting (Knyazev et al., 1991).

The extremely low taxonomic diversity of ammo-
nites (which are represented only by amaltheids and
sometimes by cosmopolitan phylloceratids) and data
indicating a significant late Pliensbachian water tem-
perature decrease in middle and low latitudes of the
Northern Hemisphere (Arabas et al., 2017; Dera et al.,
2011; Gómez Fernández et al., 2016; Rosales et al.,
2004) are in good agreement with the notions of a
noticeable cooling of the climate in the late Pliensba-
chian not only in the Arctic but also in other regions of
the Earth.

Information on the isotopic composition of the
shells of Hettangian–Pliensbachian mollusks of East-
ern Siberia is scarce. The references in the literature to
the “Pliensbachian” paleotemperature datings from
belemnite rostra (e.g., Berlin et al., 1970) result from
erroneous dating and refer to the lower Toarcian. Only
Devyatov (1983) provided the paleotemperature for
the Vilyui River basin calculated from the isotopic
composition of oxygen in late Pliensbachian–Aalen-
ian bivalve shells (Fig. 1). These data also confirm rel-
atively low paleotemperatures for the late Pliensba-
chian, which rose substantially at the beginning of the
Toarcian. Henceforth, the study of bivalves, which are
quite often found in the Hettangian–Pliensbachian
sections and often have well-preserved shells, is prom-
ising for determining the paleotemperatures from the
oxygen isotope composition.

Significant warming associated with the onset of
the Toarcian is clearly recorded by the changes in the
assemblages of both marine organisms and terrestrial
vegetation. The appearance of the thermophile Ptilo-
phyllum (Bennettitales) (Kiritchkova, 1985; Vakhra-
meev, 1987) in the Kolyma and Vilyui river basins was
confined to the early Toarcian, and at the same time,
the amount of pollen of thermophilic conifers sharply
increased in the pollen spectra (Ilyina, 1985; Markova
and Skuratenko, 1983; Zakharov et al., 2006).

Plants characteristic of the Indo-European region
were recorded in the Toarcian of the Kuznetsk,
Chulym-Yenisei, Kansk, and Irkutsk basins (Teslenko,
1964). At the same time, judging by the nature of the
accumulation of early Jurassic coals, the early Toar-
cian warming episode was not accompanied by arid-
ization and occurred against a background of a humid
EOLOGICAL CORRELATION  Vol. 27  No. 4  2019
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Fig. 1. Jurassic–Early Cretaceous climate indicators for Northern Siberia (a, b) and occurrences of marine reptiles (c). In Fig. 1a,
circles show the results of determining the paleotemperature from the oxygen isotopic composition, rhombs are results from the
Ca/Mg ratio; asterisks mark studies where initial data on the isotopic composition of belemnite rostra were cited, calculated by the
authors using the standard formula for calcite (modification (Anderson and Arthur, 1983), with a mean isotopic composition of
water characteristic of the ice-free climate (–1‰), see Table S1). The filled areas show the temperature range in terms of Ca/Mg
ratios. The Classopollis pollen content is given according to Vakhrameev (1982) with clarifications according to Ilyina (1985),
Markova and Skuratenko (1983), and Nikitenko et al. (2015). The paleolatitudes to which the bones of marine reptiles are con-
fined (shown by dots in Fig. 1c, the numbers correspond to the numbers in Fig. 3 and in Table 1) were calculated using the
http://paleolatitude.org online facilities.
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climate. It is significant that, despite the warming, the
type of vegetation in Siberia in general remained the
same as in earlier Jurassic intervals, and finds of Ptilo-
phyllum leaves are absent in coal-bearing sediments
with abundant remains of ferns, Czekanowskiales, and
Ginkgoales (Vakhrameev, 1987).

At this time in Eastern Siberia, there was a signifi-
cant northward shift of the ranges of thermophilic taxa
of bivalve mollusks, foraminifers, and dinocysts, while
Boreal taxa disappeared (Zakharov et al., 2006).

The early Toarcian transgression also led to an
expansion of the connection between the basins within
the Panboreal Superrealm, so that many immigrant
taxa arrived during the warming episode in the Sibe-
rian seas. Compared to the late Pliensbachian, the
diversity of cephalopods increased, but in bivalves it
declined significantly (Meledina et al., 2005), appar-
ently because of the wide development of black shale
facies. At this time, various belemnites first appeared
in Siberia and immediately became abundant (Mele-
dina et al., 2005). The earliest finds of ammonites in
Western Siberia are early Toarcian (Devyatov et al.,
2006). Starting from the base of the Toarcian, glen-
donites and dropstones disappear completely from
Siberian sections. Moreover, no lower Toarcian glen-
donites are known from anywhere in the world. The lit-
erature contains a significant number of determinations
of the isotopic composition of oxygen in the rostra of
Toarcian belemnites from various Siberian regions
(Berlin et al., 1970; Golbert, 1987; Golbert et al., 1968;
Naidyn and Teis, 1976). However, as noted by the
authors of these works, the paleotemperature results
obtained (usually above 20°C) seem to be too high, and
it seems that at that time the freshening of seawater
affected the isotopic composition of oxygen. 

The early Toarcian warming in Siberia was short-
lived (Ilyina, 1985; Vakhrameev, 1987). Vakhrameev
(1987) noted that, in the early Toarcian, thermophilic
plants penetrated only into areas along the seacoasts,
whereas the warming episode was apparently too brief
to change the nature of the f lora of areas remote from
the coast. 

Already in late Toarcian, there are clear signs of
cooling in Eastern Siberia. Thermophilic plants disap-
pear from the f loral assemblages. Ferns known from
the Indo-European Realm are almost absent; the
number of conifers producing Pinaceae pollen close in
morphology to the extant genera Picea and Pinus
increased (Ilyina, 1969). This cooling episode is also
recorded in Western Siberia (Teslenko, 1963). In the
north of Eastern Siberia, the diversity of ammonites
decreases, and most assemblages are represented only
by the genus Pseudolioceras. At this time, the endemism
of both ammonite and belemnite boreal faunas
increased (Meledina et al., 2005). At the top of the
Toarcian of Eastern Siberia, relatively few glendonites
are recorded (Nikitenko, 2009; this paper). Appar-
ently, the cooling episode that began at the end of the
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Toarcian (also recorded in Northwestern Europe),
which had a significant impact on the climate of the
entire Middle Jurassic of Siberia, was caused primarily
by paleogeographic and tectonic events, namely, the
almost complete cessation of the connection of the Arc-
tic Basin to Northwestern Europe through the Viking
Strait, which led to a change in the direction of cur-
rents (Korte et al., 2015).

Middle Jurassic

In the Aalenian, the climatic cooling that began at
the end of the Toarcian gradually increased. This is
recorded from paleobotanical data obtained from
materials from Western and Eastern Siberia (Ilyina,
1968, 1985; Teslenko, 1963), according to paleotem-
perature determinations made from belemnite rostra,
and also from the gradual increase in the number of
occurrences of glendonites compared to the Toarcian
(Fig. 1). The Aalenian terrestrial f lora was impover-
ished and uniform. It lacked both immigrant species
from the southern phytochoremas and Early Jurassic
plants that could not adapt to the deterioration of tem-
perature regime and possibly to an increase in the sea-
sonality of the climate (Ilyina, 1985, p. 169). For the
first time, the Boreal bivalves Retroceramus appeared
in the Aalenian in the north of Siberia and later
became one of the most characteristic elements of
benthic faunas throughout the Middle Jurassic,
becoming rare only in the Callovian. Aalenian ammo-
nites of Eastern Siberia were represented by an impov-
erished assemblage close to the late Toarcian and con-
sisting of Pseudolioceras and rare phylloceratids. By
the end of the Aalenian, the diversity of belemnites
and bivalve mollusks was also significantly reduced
(Meledina et al., 2005). 

In the second half of the early Bajocian in Siberia,
a short-term warming episode is recorded, marked by
the occurrence of plants of southern origin. In the
north of Eastern Siberia, the presence and higher con-
tent of spores characteristic of the Bajocian of
Mangyshlak (Ilyina, 1985) are recorded in the palyno-
flora of this interval. The occurrences of the rare
ammonite genera Normannites and Lissoceras are
recorded at the same level (Meledina, 1991). However,
this warming is not marked by changes in paleother-
mometry (Fig. 1), although for the early Bajocian
there is an increase in minimum temperatures. At the
same time, records of glendonites in the lower Bajo-
cian are fairly widespread. If an early Bajocian warm-
ing episode took place, then it was apparently very
brief, and from the beginning of the late Bajocian (or
rather from the very end of the early Bajocian), there
are signs of significant cooling. In the late Bajocian,
Central Asian immigrant species disappear from pol-
len assemblages, the diversity of ferns is reduced, the
Lycopodiaceae become widespread, and as in the late
Pliensbachian, sphagnoid mosses become abundant
(Ilyina, 1985).
EOLOGICAL CORRELATION  Vol. 27  No. 4  2019
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The ammonite faunas of the late Bajocian of East-
ern Siberia were mainly represented by endemics,
sometimes supplemented by immigrant taxa from the
North Pacific (Meledina et al., 2005), and Megas-
phaeroceras on Franz Josef Land (Repin, 1999)
appeared at this level. In the upper Bajocian deposits
of Siberia, glendonites are unusually widespread and
are found in the maximum number of Jurassic locali-
ties (Fig. 1). At the same time, glendonites are usually
abundantly present in sections and are represented by
morphologically diverse bodies, although their find-
ings are often confined to several relatively narrow
stratigraphic intervals. According to paleothermome-
try, the trend toward a decrease in the paleotempera-
tures from the Toarcian to the late Bajocian is clearly
recorded (Fig. 1). Bajocian deposits in the Lena River
basin often contain dropstones that Tuchkov (1973)
interpreted as indicators of ice rafting. We have seen
almost unrounded pebbles both in the upper Bajocian
and in the lower Bathonian of the middle reaches of
the Lena River. Their presence may be due to distribu-
tion by seasonal ice. The beginning of the Bathonian,
owing to the significant warming of the climate, which
was particularly noticeable in the southern regions,
was marked by a significant restructuring of Siberian
floras. In the south of Siberia, aridization of the cli-
mate also began at this time and later continued in the
north of Eurasia throughout the Late Jurassic (Abbink
et al., 2001; Hu et al., 2017). In the Kansk-Achinsk
Basin, palynological records show an increased content
of taxa inherent in the Western European and southern
palynoflora and the appearance of Classopollis pollen.
In the north of Eastern Siberia, warming was less sig-
nificant, but this region is characterized by records of
ferns spores Marattisporites, Lophotriletes torosus Sachs
et Iljina, and occasional Classopollis (Ilyina, 1985). At
the same time, because of the continuing isolation of
the Arctic Basin, mollusk assemblages (primarily
ammonites) remained relatively poor and were char-
acterized by a high degree of endemism. The number
of glendonites in comparison with the Bajocian
decreased, and the size of these pseudomorphs in the
Bathonian was on average less than in the Bajocian.

From the late Bathonian and especially Callovian,
against the background of the boreal transgression, the
climate in the south of Siberia became increasingly
arid, while in the north of Siberia it remained largely
humid and warm-temperate.

In the south of Western and Eastern Siberia, in
conditions of a semiarid climate, coniferous trees with
Classopollis pollen, which later, at the beginning of the
Late Jurassic, became dominant in the f lora of south-
ern Siberia, became widespread. The increased arid-
ization of the climate is indicated by the cessation of
coal accumulation and the sedimentation at first of
carbonate rocks and then variegated rocks in the
Kansk-Achinsk Basin and in the south of the West
Siberian Plain (Ilyina, 1985).
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The upper Bathonian in the north of Siberia con-
tains the first records of Subboreal cosmoceratids
(Meledina et al., 1991), but the late Bathonian–Callo-
vian was, nevertheless, sharply dominated by boreal
cardioceratids. Only in Western Siberia are relatively
infrequent finds of cosmoceratids recorded in all Callo-
vian substages, and occasional finds of other Subboreal
ammonites (Proplanulitinae) are also known (Alifirov
and Meledina, 2010; Alifirov et al., 2016).

In the Callovian, glendonites became increasingly
rare, and from the beginning of the Oxfordian, these
pseudomorphs disappeared in the sections of Eastern
Siberia. Ilyina (1985), who noted some discrepancy
between the paleobotanical evidence of noticeable
warming in the Callovian in the north of Siberia and the
presence of glendonites, suggested that in this case the
presence of glendonites may be associated with an
increase in the depth of the basin during a transgression.

According to paleothermometry data, however, it is
impossible to speak of any significant warming (Fig. 1),
since the maximum temperatures increased, but the
minimum temperatures became lower. Rather, it can
be assumed that, owing to some warming, the season-
ality of the climate increased at high latitudes, and
because of a rising sea level, the temperature gradient
between the near-bottom and near-surface waters
could have increased.

Late Jurassic
In the Oxfordian, warming that began in the late

Middle Jurassic continued. This time was marked by
mass penetration of southern and western European
plants into northern Siberia. This was associated with
an increase in temperature against a background of
aridization, which continued in Eurasia during the
Late Jurassic. At the same time, in the east of Siberia,
the climate remained humid, as evidenced by the max-
imum of Late Jurassic coal accumulation recorded at
this time in the South Yakutian coal basin (Ilyina,
1985). Classopollis pollen (up to 12–20%) is noted in
the lower Oxfordian palynological assemblages of the
western coast of the Anabar Bay, and its content in the
Ust-Yenisei region reaches 31%; the assemblages also
contain Gleicheniaceae and Caytoniales (Ilyina,
1985). Thermophilic land palynomorphs are found in
large numbers (up to 20% or more) in samples from
the upper Oxfordian–Kimmeridgian of the deepest
part of the Yenisei-Khatanga Strait (Nordvik Penin-
sula), and only at the very end of Kimmeridgian and in
the Volgian did the amount of these palynomorphs
decrease (Nikitenko et al., 2015). The Upper Jurassic
deposits as a whole are characterized by a fairly wide-
spread occurrence of glauconite (Kaplan, 1976).
While in the Oxfordian Siberian ammonite faunas
remained relatively impoverished and were character-
ized mainly by cardioceratids (and only in the lower
reaches of the Lena River did they co-occur with
Pacific Phylloceratida), in the Kimmeridgian, Subbo-
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real Aulacostephanidae became widespread in the
Yenisei-Khatanga Strait, which in shallow coastal
facies (Boyarka and Kheta rivers) at some levels com-
posed most of the ammonite assemblages (Mesezh-
nikov, 1984). North of East Taimyr, Aulacostephani-
dae were found only at some levels, whereas they were
not found in the parts of the basin that were the deep-
est and most distant to the east toward the paleopole
(Nordvik Peninsula). At the same time, uncommon
Tethyan aspidoceratids migrated to the Subpolar Urals
(Zakharov et al., 2005). The Kimmeridgian of the
Nordvik Peninsula contains the northernmost occur-
rences of Jurassic calcareous nannoplankton (Rogov
and Ustinova, 2018). In the early Kimmeridgian of the
Nordvik Peninsula, thermophilic foraminifers appeared
during a transgressive episode (Nikitenko et al., 2015).
Later, during the Volgian, the biogeographic differen-
tiation of marine biota gradually increased. A warming
episode that continued in Siberia throughout the Late
Jurassic is also supported by isotope data obtained in
recent years from belemnite rostra (Dzyuba et al.,
2013, 2018;  Nunn, 2007; Price and Mutterlose, 2004;
Žak et al., 2011; Zakharov et al., 2005, 2014). Accord-
ing to the palynological data from the Subpolar Urals,
for the Jurassic-Cretaceous boundary beds, warming
is recorded at the very end of the Volgian (Dzyuba et
al., 2018). Glendonites are rare in the Upper Jurassic
of Siberia; they are known in the lower Oxfordian, and
recently unconfirmed glendonites were also found in
the Kimmeridgian AH-3 Borehole drilled in eastern
Taimyr; there are no glendonites in the Volgian Stage
of Siberia. All these data agree well with the hypothesis
of a relatively warm climate that prevailed in the Late
Jurassic in the north of Siberia, whereas a slight cool-
ing possibly began only at the end of the Volgian
(Zakharov and Saks, 1980). It should be noted that the
paleothermometry data obtained from the Ca/Mg
ratios contradict data on the Late Jurassic climate
obtained by other methods and show a long-term
cooling from the late Toarcian to the Kimmeridgian
(Fig. 1). This is consistent with the hypothesis that the
Ca/Mg ratios in the molluscan shells is equivocally
correlated with temperature and cannot be used with
certainty as an indicator of paleotemperatures
(Rosales et al., 2004; Wanamaker et al., 2008). In
modern bivalves, the relationships between Ca/Mg
and temperature are sensitive to salinity (Wanamaker
et al., 2008) and to the season of shell growth and differ
in the outer and inner shell layers (Schöne et al., 2013).
At the same time, in the Nordvik section, the lowest
paleotemperatures are recorded in the Oxfordian and
Kimmeridgian. A slight decrease in temperature in the
early Kimmeridgian, followed by a warming episode at
the boundary of the early and late Kimmeridgian,
which primarily led to an increase in temperature in
the lower part of the water column against a back-
ground of almost unchanged mean temperatures
(Colombié et al., 2018), is also recorded in Europe. At
the same time, in different parts of the Arctic Basin,
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warming and cooling episodes during the Kimmerid-
gian did not always coincide, which may be due to the
circulation of water masses. Thus, on Spitsbergen, two
episodes of warming can be identified in the early
Kimmeridgian, as recorded by the strong prevalence of
aulacostephanids in ammonite assemblages. At the
boundary of the early and late Kimmeridgian, a cooling
episode is recorded, suggested by the presence of glen-
donites and a sharp change in ammonite assemblages,
completely lacking Subboreal Aulacostephanidae.

Early Cretaceous

At the beginning of the Cretaceous in Siberia, the
climate gradually cooled, although in general it
remained rather warm and humid. In the Subpolar
Urals during the Ryazanian and Valanginian, the f lora
developed in a warm and humid climate, enabling the
preservation of relict forms and promoting the profuse
development of tropical ferns and thermophilic coni-
fers (Golbert et al., 1972). At the beginning of the
Early Cretaceous, the diversity of cycads and Bennet-
titales increased in the Lena River basin (Kiritchkova,
1985), and these groups remained abundant until the
Aptian. The climate here changed gradually, which,
according to Vakhrameev (1991), is supported by the
wide distribution of coal. Ryazanian and Valanginian
marine biota of Siberia was strongly dominated by taxa
of Arctic origin, but some levels contained taxa close
to or identical to those of Pacific origin. The rare
records of the ammonite genus Sachsia (Himalayati-
dae) in the lower part of the Ryazanian on the Kheta
River, as well as the Pacific species of heteromorph
Bochianites in the Ryazanian and Valanginian of North-
ern Siberia (Rogov and Igolnikov, 2009; Shulgina,
1985; Zakharov et al., 2014), should be noted. Paleo-
thermometry data confirm the decrease in seawater
temperature at the beginning of the Cretaceous, both
in the north of Eastern Siberia, which is in good agree-
ment with the data on the distribution of glendonites,
and to the west in the Subpolar Urals. The first, still
rare glendonites appear at the top of the Ryazanian of
Northern Siberia, becoming abundant at the end of
the Valanginian (Rogov et al., 2017). During the Early
Cretaceous in Siberia, the content of Classopollis pol-
len gradually decreased. In general, from the begin-
ning of the Ryazanian to the Hauterivian, there is a
gradual cooling with minimum temperatures at the
Valanginian–Hauterivian boundary. This time inter-
val was characterized by a decrease in the diversity of
mollusks; benthonic faunas of the Hauterivian were
dominated by the typical Boreal bivalves of the genus
Buchia. In the Hauterivian–Barremian palynological
assemblage of Western Siberia, the amount of
Classopollis pollen becomes even more reduced com-
pared with earlier assemblages, and in the Barremian,
this pollen becomes very rare (Chlonova et al., 1990). 

By the end of the Hauterivian, marine sediments
are preserved only in Western Siberia, and the sea left
EOLOGICAL CORRELATION  Vol. 27  No. 4  2019
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the region in the Barremian. During the Early Creta-
ceous Epoch, a gradual cooling was observed, which
was apparently interrupted by minor early Aptian and
early Albanian warming episodes, of which the first is
recorded by f lora, and the second by appearance of the
ammonites Arcthoplites (Subarcthoplites) and Pseudop-
ulchellia and bivalves Inoceramus anglicus Woods in
Western Siberia (Zakharov et al., 2000). Apparently,
in the late Albian–early Cenomanian, the cooling
reached a minimum (Vakhrameev, 1978). The appear-
ance of redbeds in the upper Aptian lake sediments of
the southwestern, southern, and southeastern parts of
Western Siberia indicates aridity of the climate. The
northern boundary of the arid zone in Western Siberia
at this time shifted to the south compared with the
early epochs of the Cretaceous period, and a relatively
uniform humid regime was established in this region.
The apparent zonality of the precipitation distribu-
tion, which is fixed from the late Valanginian to the
early Aptian, was smoothed out in the late Aptian
(Golbert, 1987). Information about the Albian climate
is inconsistent. According to Golbert (1987), geologi-
cal indicators clearly show that a very warm humid cli-
mate (close to the modern tropical) at the end of the
Early Cretaceous was characteristic of almost the whole
of Western Siberia up to the present Arctic Circle,
which is confirmed by the greatest development of
bauxite formation in the Meso-Cenozoic history of
Siberia marked in this interval. The early–middle
Albian flora is distinguished by the highest species
diversity for the Cretaceous (about 100 species)
(Golovneva, 2005). At the same time, the late Albian
flora of the territory of Siberia is known only in the
West Siberian region. In Eastern Siberia, most of the
late Albian has a gap in sedimentation (Golovneva,
2005). The fossil f lora of this age is known from adja-
cent regions, such as Kotelnyi Island (Herman and
Spicer, 2010; Kuzmichev et al., 2009, 2018). On the
other hand, the cooling in the late Aptian–early
Albian is confirmed by the wide distribution of glen-
donites in sediments of this age (including in the
Northeast of Russia; see Rogov et al., 2017), in some
cases encountered together with dropstones, inter-
preted as indicators of ice rafting (upper Aptian–lower
Albian of Spitsbergen; see Dalland, 1977). Cretaceous
glendonites are not found higher than the lower
Albian, reappearing in the geological record only at
the end of the Paleogene. The isotopic paleotempera-
ture data for the Aptian–Albian Arctic are scarce. Sev-
eral data points obtained from aragonite of ammonite
shells have been published only for North Alaska and
the Koryak Highlands (Zakharov et al., 2011) (Fig. 2).

Late Cretaceous

In Siberia, the climate during the transition from
Early to Late Cretaceous changed insignificantly; only
in Western Siberia in the Cenomanian there is a sharp
shift of the areas of bauxite formation to the south,
STRATIGRAPHY AND GEOLOGICAL CORRELATION 
which according to Golbert (1987) indicates some
cooling and humidification of climate.

At the same time, massive coal accumulation, an
increased carbonate content of siliciclastic rocks, and
the formation of deposits of oolitic iron ores, as well as
the widespread occurrence of kaolinite, indicate that a
rather warm climate remained. Slightly south of the
region under consideration (in Kazakhstan), gradual
warming is recorded in the interval from the Albian to
the Cenomanian according to the distribution of
Classopollis pollen and analysis of angiosperm leaves
by the CLAMP method (Herman, 2004; Herman
et al., 2002; Vakhrameev, 1982). Cenomanian f loras
of Western Siberia are very close to late Albian in com-
position and ecological appearance, while the large
thin leaves of most plants indicate significant humid-
ity. In general, the climate of the southern part of
Western Siberia in the Cenomanian can be considered
as humid (Golovneva, 2005).2 The Cenomanian floral
assemblages of northern Eastern Siberia are markedly
different from those described above: they are repre-
sented by plants of the Early Cretaceous type with an
abundance of ferns, an almost complete absence of
flowering plants, and the presence of cycadophytes,
ancient ginkgoales, and conifers. At that time, the cli-
mate of southern Eastern Siberia remained warm and
humid, as indicated by high species diversity, the prev-
alence of taxa with large leaves among flowering tree
plants, and the presence of taxa with smooth-edged
leaves (Golovneva, 2005). The Cenomanian marine
deposits in the Ust-Yenisei Depression show the pres-
ence of the cosmopolitan species Inoceramus pictus
Sow., as well as Inoceramus of Pacific origin. At the
same time the ammonites Placenticeras and Borissia-
koceras appeared in the West Siberian Basin
(Zakharov et al., 2003). In the Turonian of Western
Siberia, the number of plants with smooth-edged
leaves decreased, and species with large leaves with a
serrated edge prevailed; most taxa were deciduous,
indicating a climate cooling. Among the Taxodiaceae,
evergreen representatives of the genus Sequoia were
replaced with shoot-shedding representatives of the
genus Taxodium (Golovneva, 2005). Similar changes
in the f lora are also recorded in Eastern Siberia. In the
north of Siberia (Kheta River basin), conifers were
highly diverse and abundant, whereas f lowering plants
here were relatively rare. The dominance of Platana-
ceae and the morphology of leaves of f lowering plants
indicate a predominance of deciduous vegetation and
a wrm temperate humid climate (Golovneva, 2005).
Even closer to the estimated paleopole, on New Sibe-
ria Island, according to CLAMP analysis of the Turo-
nian f lora, the climate was close to warm-temperate,

2 The age of the Late Cretaceous f loras of Western Siberia is
debatable. According to Shchepetov (2018), f lora which,
according to Golovneva (2005), corresponds to the interval from
the Albian to Maastrichtian belongs to the substantially nar-
rower Albian–Cenomanian (? Turonian) stratigraphic interval.
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Fig. 2. Climate indicators of the second half of the Early Cretaceous and Late Cretaceous of Northern Siberia (a) and occurrences
of marine reptiles (b).
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with mean annual temperatures of +9.2... ± 2.2°C
(Herman and Spicer, 2010).

Vakhrameev (1978) attributed the Turonian cool-
ing episode recorded in the f lora of Western Siberia to
the influence of a large transgression that involved the
entire West Siberian lowland. In the Turonian marine
biota, a number of events mainly related to the appear-
ance of cosmopolitan taxa in Western Siberia among
bivalves and foraminifers are established. At the same
time, the Cenomanian–Turonian boundary interval
coinciding with the maximum warming was followed
by a relative cooling during the middle to late Turo-
nian (Zakharov et al., 2003). The oxygen isotope com-
position in the molluscan shells of the Turonian of
STRATIGRAPHY AND G
Ust-Yenisei Depression was extensively studied, but
any conclusions about the paleotemperature of water
based on these measurements have not been made,
and low δ18О values were interpreted as a result of the
salinity decrease (Naydin et al., 1978; Teis et al., 1978).

The results obtained later in separate analysis of
calcite and aragonite parts of belemnite rostra (Naidin
et al., 1978) also show δ18О values corresponding to
clearly elevated temperatures (Table S13), which may
be due to both the effect of salinity decrease and the

3 Additional materials for the Russian-language online version of the
article are available at https://journals.eco-vector.com/0869-592X,
and for the English version at https://link.springer.com/journal/
volumesAndIssues/11506.
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water isotopic composition in the West Siberian basin.
The Turonian cooling episode is also established by
analyzing the f loras of Northeast Asia, and it is espe-
cially pronounced in a decrease in the mean annual
temperature and temperature of the coldest month
(Herman, 2004; Spicer and Herman, 2010). In the
Coniacian–Campanian, climatic conditions in gen-
eral remained close to those of the Cenomanian–
Turonian, but in some places, signs of some decrease
in humidity are recorded. Short-term relatively warm
intervals in the Coniacian–Campanian time can be
assumed from the occurrences of thermophilic bivalve
mollusks Pycnodonte and Lopha on the Usa River in
the upper parts of the Coniacian and in the terminal
Santonian (Marinov et al., 2002). The Campanian
flora of Western Siberia is characterized by small leaf
sizes, which correspond to a certain aridization of the
climate observed during the Santonian–Campanian
in most of North Asia. However, the warming of the
climate that occurred at that time on Sakhalin and in
the Anadyr-Koryak region and was generally recorded
in the Campanian (Vakhrameev, 1978) did not mani-
fest itself in this region (Golovneva, 2005). Small
leaves, associated with an increase in aridity of cli-
mate, are recorded in the Santonian–Campanian
flora of the Vilyui Depression. In northern Siberia, the
Santonian–Campanian boundary beds are mainly
dominated by platanaceous genus Arthollia and spe-
cies of the genus Trochodendroides and Sequoia (Tax-
odiaceae) (Golovneva, 2005). The abundance of large
leaves of Pseudoprotophyllum, represented by the same
species as in the Turonian of the Khatanga Depres-
sion, indicates the preservation of a humid warm-tem-
perate climate in the north of Siberia in the late Santo-
nian–early Campanian (Golovneva, 2012). In the
Coniacian–Campanian, warming recorded in the
northeast of Western Siberia (Marinov et al., 2008)
was replaced by a brief cooling in the late Campanian
(Zakharov et al., 2003). For this matter, paleotem-
perature determinations obtained from belemnites
from the “Pterium beds” in the basal Campanian from
the Synya River seem to be interesting (Naidyn et al.,
1966). The paleotemperatures are determined at 9.1–
9.3°С (for the rostra of Paractinocamax) and 14.4–
15.6°С (for the rostra of the small Actinocamax), which
is probably due to differences in the lifestyle of these
belemnites (Naidyn et al., 1966; Teis and Naidyn,
1973). A late Campanian (?) cooling episode is also
recorded in Arctic Canada (Super et al., 2018). 

The Campanian–Maastrichtian boundary in
northern Western Siberia lies in a uniform siliciclastic
sandy-silt series. The Maastrichtian succession of the
Tanama River shows no signs of carbonate deposition.
The northernmost sections, containing carbonate
rocks of this age, were opened by boreholes in the lat-
itudinal reaches of the Ob River, related to the influ-
ence of warm water input through the Turgai Strait,
which opened up during the Maastrichtian. A warm-
ing episode in the early Maastrichtian of Western
STRATIGRAPHY AND GEOLOGICAL CORRELATION 
Siberia was reported by Marinov et al. (2008). For the
southern part of Western Siberia (Ayat River), there are
several determinations of the oxygen isotopic composi-
tion from belemnite rostra. The values of 11.6°С were
obtained for the early Maastrichtian and 13.5–15.2°С
for the late Maastrichtian (Naidyn et al., 1964).

OVERVIEW OF THE OCCURRENCES
OF MARINE REPTILES IN THE JURASSIC 

AND CRETACEOUS OF SIBERIA

Remains of marine reptiles have been reported reg-
ularly from the Mesozoic of Siberia: during geological
surveys, prospecting, and other works, researchers
often found remains of “saurs” and “gigantic sauri-
ans,” while indicating finds of both isolated bones and
skeletons. Unfortunately, only a few of these reported
finds were collected and transferred to museums, most
of them remained at the place of detection, and only
records in field diaries and cursory references in the
literature have remained (Fig. 3; Table 1).

Table 1 and Fig. 3 summarize all available informa-
tion on the findings of marine reptiles in the Jurassic
and Cretaceous of Siberia. Most finds come from the
Pliensbachian–Bajocian interval; information about
them was obtained mainly through the works of Men-
ner (1948) and, to a greater extent, Kirina (1966,
1976), as well as the observations of V.G. Knyazev and
V.P. Devyatov (Knyazev, pers. comm.; Knyazev et al.,
1991, 2003). Isolated occurrences are recorded by Bid-
zhiev and Minaeva (1961), Tuchkov (1973), and Mele-
dina et al. (1978). There are no data on marine reptile
finds from the Bathonian–Callovian of Siberia.

Marine reptiles reappear in the fossil record of
Siberia in the Late Jurassic. At the same time, only
single occurrences are recorded in the Oxfordian and
Kimmeridgian (Table 1). Several finds are known
from the Volgian, the first of which (plesiosaur verte-
bra and coracoid) was described at the beginning of
the last century (Jakowlew, 1903). Later, in 1961, an
ichthyosaur vertebra was found by Zakharov in the
middle Volgian succession on the Dyabaka-Tara River
(Taimyr). Subsequent discoveries of remains of ich-
thyosaurs and plesiosaurs were made only recently by
Rogov (Table 1). It is important to note a few finds
from the base of the Lower Cretaceous. For example,
Ryabinin (1939) mentioned a skeleton of a plesiosaur
from the “Valanginian” (that is, in the modern sense,
either Ryazanian or Valanginian) of the Polar Urals.
Efimov (2006) mentioned the discovery of ichthyo-
saur remains on the Anabar River; Sachs et al. (1963)
also recorded vertebrae of marine reptiles in the
Valanginian of the Anabar basin.

In younger Cretaceous deposits, finds of marine
reptiles are distributed sporadically. There is one dis-
covery from the Albian of Uyedineniya Island (Ryabi-
nin, 1939), two vertebrae from the lower Coniacian of
the Yangoda River (Zakharov et al., 1989), bones from
 Vol. 27  No. 4  2019
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Fig. 3. Localities of marine reptiles in the Early Jurassic (a), Middle–Late Jurassic (b), and Cretaceous (c). Legend: (1) Hettang-
ian–Pliensbachian, (2) Toarcian, (3) Aalenian, (4) Bajocian, (5) Oxfordian-Kimmeridgian, (6) Volgian, (7) Ryazanian–
Valanginian, (8) Albian, (9) Coniacian, (10) Turonian–?Maastrichtian, (11) Santonian–Maastrichtian.
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Fig. 4. Photographs of the marine reptile remains at their localities (collected by M.A. Rogov). (a) Plesiosaur cervical vertebra,
Anabar Bay, Eren Formation, upper Toarcian; (b) pliosaur tooth in a concretion, Kheta River, Outcrop 23, upper Volgian, Oken-
sis Zone; (c) part of the vertebral column and ribs of an ichthyosaur in a concretion, Levaya Boyarka River, middle-upper Vol-
gian, scree; (d) ichthyosaur vertebrae and rib in a concretion, Kheta River, Outcrops 18–19, upper Volgian, Okensis Zone.

(a) (b)

(c) (d)
the Turonian–Maastrichtian deposits on the Tanama
River (Zakharov and Khomentovsky, 1989; Zakharov
et al., 1989), bones from the Campanian-Maastrich-
tian deposits of the Bolshaya Laida River (Marinov
and Sobolev, 2006), and fragments of plesiosaur bones
from the Santonian–Campanian Mutino Formation
on the Kheta River (this paper).

DESCRIPTION OF SOME NEW FINDS 
OF MARINE REPTILES FROM THE JURASSIC 

AND CRETACEOUS OF SIBERIA

During the field work in the Anabar Bay in the sum-
mer of 2008 in the Eren Formation (Toarcian),
M.А. Rogov found an isolated cervical vertebra of a ple-
siosaur (Fig. 4a). The vertebral centrum has a cylindri-
cal shape; articular surfaces are circular in outline, with
width exceeding height (ratio of 0.8). The length of the
centrum is comparable to its height (Figs. 5a–5c).
Bipartite facets for the ribs are present. The neural arch
is fused to the centrum without a visible suture; how-
ever, a distinct lateral ridge can be observed in the place
STRATIGRAPHY AND G
of their supposed articulation (Fig. 5b). This vertebra
can be identified as Plesiosauria indet.

An isolated vertebra from a caudal region of a
medium-sized ichthyosaur was found by M.A. Rogov
in 2014 on the Levaya Boyarka River (Outcrop 23
(Sachs et al., 1969)) in a loose concretion of Kimme-
ridgian age, although an early Volgian age cannot be
excluded. This vertebra is significantly shortened and
is characterized by rounded outlines of articular sur-
faces, tapering in the upper part, giving it a slightly pear-
shaped outline (Fig. 5d), which is observed in Ophthal-
mosauridae (McGowan and Motani, 2003; Moon and
Kirton, 2016). Similar vertebrae were described by
Ryabinin (1912) from the Kimmeridgian of the Pechora
region. The Volgian deposits of the Levaya Boyarka
River (Outcrop 23) contained a nodule fragment with
a partly preserved vertebral column and ribs of a small
ichthyosaur (Fig. 4c). This finding cannot be identi-
fied more precisely than Ichthyosauria indet.

In 2015, M.A. Rogov found remains of marine
reptiles in the Upper Volgian deposits on the Kheta
EOLOGICAL CORRELATION  Vol. 27  No. 4  2019
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Fig. 5. Remains of marine reptiles. (a–c) Plesiosauria indet., cervical vertebra of a medium-sized plesiosaur, SSTU MEZ, no. 4/121,
Anabar Bay, Eren Formation, upper Toarcian, collected by M.A. Rogov (see also Fig. 4a); (d, e) Ichthyosauria indet., caudal verte-
bra, SSTU MEZ, no. 4/122, Levaya Boyarka River, Outcrop 23, Kimmeridgian, collected by M.A. Rogov; (f–h) Ichthyosauria
indet., anterior presacral vertebral centrum, Dyabaka-Tara River, middle Volgian, collected by V.A. Zakharov; (i–k) cervical verte-
bra of the plesiosaur Elasmosauridae indet., CNIGR 1/5926, Uyedineniya Island, Albian (see Ryabinin, 1939); (l, m) the proximal
part of the femur of a large plesiosaur, specimen MSTU MEZ 4/124, Kheta River, scree in the stratotype of the Mutino Formation,
Santonian–Campanian, collected by M.A. Rogov; (n, p) pectoral vertebra of a small-sized plesiosaur Elasmosauridae indet., spec-
imen SSTU MEZ, no. 4/123, Kheta River, scree in the stratotype of the Mutino Formation, Santonian–Campanian, collected by
M.A. Rogov.

(a) (b)

(c)

(d) (e)

(f) (g) (h)

(i)

(j)

(k)

(l) (m)

(n) (o) (p)

50 mm
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River: a tooth of the pliosaurid Thalassophonea
indet. (Fig. 4b; Zverkov et al., 2018) and ichthyosaur
bones (Fig. 4d), enclosed in massive concretions.
Their description will be published elsewhere after
preparation and detailed study.

An isolated ichthyosaur vertebral centrum was
found by V.A. Zakharov in 1961 on the Dyabaka-Tara
River in the middle Volgian deposits (Dorsoplanites
maximus–Taimyrosphinctes excentricus ammonite
zones; Buchia taimyrensis Zone; see Zakharov, 1981).
This centrum (Figs. 5f–5h) belongs to the anterior
part of the vertebral column, as evidenced by the char-
acteristic position of the rib facets: the diapophyses are
merged with the facets of the neural arches and the
anterior edge of the vertebra; the parapophyses are
separated and located in the middle of the height of
the vertebra (Fig. 5h). This vertebra is very similar in
shape to those of Arthropterygius sp. (Zverkov et al.,
2015, figs. 5e, 5f); however, this form of the anterior
presacral vertebrae is characteristic of most of the
Middle to Late Jurassic and some Early Jurassic ich-
thyosaurs; therefore, the finding cannot be deter-
mined more accurately than Ichthyosauria indet.

M.A. Rogov found fragments of plesiosaur bones
in the scree of the type section of the Mutino Forma-
tion (Santonian–Campanian). The proximal part of
the femur of a relatively large plesiosaur is fairly well
preserved (Figs. 5f–5h). The head of the bone is
rounded and convex, which indicates a mature ani-
mal. The dorsal tuberosity is rather well developed and
also has rounded outlines; however, it is not com-
pletely detached from the head by the zone of the cor-
tical bone. This bone could equally belong to Elasmo-
sauridae or Polycotylidae widely distributed in the
Late Cretaceous; similar characteristics are also
observed in some more primitive plesiosaurs; for this
reason, we identify the specimen as Plesiosauria indet.
A pectoral vertebra of a small plesiosaur (Figs. 5i–5k)
was also found in this locality. It is characterized by a
proportionally small length and flat articular faces
(platycelous type). At the same time, the width of the
articular surface exceeds its height, giving it an oval
shape (ratio of 0.73). Such proportions are character-
istic of Elasmosauridae, which allows this vertebra to
be identified as Elasmosauridae indet. This vertebra is
of special interest, indicating the presence of small-
sized and presumably young plesiosaurs along with
large individuals at high latitudes during the Campan-
ian–Maastrichtian (see the discussion below).

MARINE REPTILES 
AS CLIMATE INDICATORS

In the past two decades, a lot of new data on Meso-
zoic marine reptiles have been published, which made
it possible to substantially change the views not only
on their evolution but also on many aspects of their
biology. The most important discoveries include evi-
dence supporting high metabolic rates in the majority
STRATIGRAPHY AND G
of advanced representatives of the main groups of
marine reptiles (ichthyosaurs, plesiosaurs, and mosa-
saurs) (Bernard et al., 2010; Harrell et al. 2016;
Motani, 2010).

The first hypotheses about high metabolic rates in
Mesozoic marine reptiles were made in the last cen-
tury (Buffrénil and Mazin, 1990), but only recently
the convincing evidence supporting earlier suggestion
was obtained. For example, an analysis of the stable
isotope δ18О in the teeth of ichthyosaurs and plesio-
saurs showed that the calculated temperature of their
bodies could have ranged from 35 ± 2 to 39 ± 2°C,
which coincides with the temperature of modern ceta-
ceans (Bernard et al., 2010). Similar calculations for
mosasaurians demonstrated that the mean tempera-
ture of various members of this group ranged from 33.1
to 36.3°C, which did not depend on the estimated
body mass of the animals. The latter suggests that
these reptiles were endothermic, rather than giganto-
thermic as was previously thought (Bernard et al.,
2010; Harrell et al., 2016; Motani, 2010).

The histology of the fossil bones of marine reptiles
also supports their active metabolic rate. According to
the highly vascularized fibrolamellar bone and the
widely spaced cyclical growth marks, juvenile plesio-
saur individuals had high growth rates at which a sig-
nificant increase in the size of the animal occurred
during the first year of life (Wintrich et al., 2017a); fur-
thermore, the calculations of the resting metabolic
rate of plesiosaurs demonstrates values in the range of
birds (Fleischle et al., 2018). Additionally, recently
studied patterns of blood circulation can support
hypotheses of rapid growth and active metabolism of
plesiosaurs (Wintrich et al., 2017b). Similar data on
rapid growth rates based on well vascularized fibrola-
mellar bone structure were obtained for ichthyosaurs
(Houssaye, 2013; Houssaye et al., 2014).

Although for ichthyosaurs viviparity was established
more than a century ago, for plesiosaurs and mosa-
saurs, evidence for giving birth to live young was
obtained only relatively recently, whereas for all these
groups a transition to viviparity is supposed to take place
from the early stages of adaptation to life in water. It has
also been suggested that viviparity could have developed
as a preadaptation in the terrestrial ancestors of some
marine reptiles (Field et al., 2015; O’Keefe and Chi-
appe, 2011; Motani et al., 2014). It is still unclear
whether the marine reptiles migrated to give birth to live
young in any breeding ground. The assumption that
some plesiosaurs were born in high-latitude seas is con-
firmed by the findings of remains of very small and sup-
posedly young plesiosaurs in high-latitude localities
(Campbell et al., 2013; Kear, 2007; Martin, 2002; Mar-
tin et al., 2007; Vavrek et al., 2014). This is also sup-
ported by our data (specimen SGTU MEZ 4/124).
Given the rapid growth in the early ontogenetic stages
established for plesiosaurs (Wintrich et al., 2017a), it is
more likely that these reptiles could have been born in
EOLOGICAL CORRELATION  Vol. 27  No. 4  2019
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high latitudes, rather than young individuals traveling
there at an early age from low-latitude regions. Marine
reptile assemblages have also been described from high-
latitude and, judging by the abundance of glendonites,
apparently cold-water Upper Aptian deposits of Austra-
lia (Kear, 2006a, 2006b) and Arctic Canada (Vavrek
et al., 2014). It remains unclear whether they lived per-
manently in cold waters of high latitudes or made sea-
sonal migrations like cetaceans (Mate et al., 2015; Ras-
mussen et al., 2007; Stevick et al., 2010). Nevertheless,
for some marine reptiles, there is evidence on wide
ranges covering both low and high paleolatitudes. In a
number of recent studies, pathways were proposed for
the distribution of some marine reptile taxa in the Late
Jurassic (Fernández and, Maxwell, 2012; Gasparin and
Fernández, 2005; Zverkov et al., 2015) and in the Late
Cretaceous (Grigoriev et al., 2015).

Thus, at present, marine reptiles are perceived as
highly specialized active predators which completely
lost the link to land in the early stages of their evolu-
tionary history and relatively quickly adapted to the
pelagic lifestyle. Viviparity, high metabolic rate, and
rapid growth allowed them to occupy the tops of food
chains in marine ecosystems during the Mesozoic. All
this casts doubt on the assumption that a cold climate
could have somehow limited their ranges.

CONCLUSIONS
We analyzed all the available data on the Jurassic

and Cretaceous climates of Siberia and on the distri-
bution of marine reptiles in this region. Most of the
localities for Siberian marine reptiles are in high
paleolatitudes (70°–87° N). At the same time, no
direct connection was found between climate f luctua-
tions and the distribution of marine reptiles. Although
the highest number of their occurrences corresponds
to the warmest epochs (early Toarcian and Volgian),
they were also relatively common during cooler epi-
sodes (late Pliensbachian, Aalenian–Bajocian), but
are unknown in some certainly warmer water intervals
(Callovian). Cretaceous records of marine reptiles are
very scarce in Siberia, while they are known from the
relatively “cold” Valanginian; their remains have not
yet been reported from the Ryazanian. In the Albian–
Late Cretaceous time interval, the remains of marine
reptiles are relatively rare and remain poorly known.
The modern understanding of the biology of marine
reptiles differs significantly from the views of the past
century; in recent works, it has been shown that a
number of advanced Jurassic and Cretaceous marine
reptiles had a high level of metabolism and were
homoeothermic. In view of the foregoing, it can be
concluded that finds of marine reptiles cannot be used
as indicators of a warm climate.
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