М. С. МЕСЕЖНИКОВ

СТРАТИГРАФИЯ И АММОНИТЫ ЮРСКИХ
ОТЛОЖЕНИЙ ВОСТОЧНОГО СКЛОНА
ПРИПОЛЯРНОГО И ПОЛЯРНОГО УРАЛА

Автореферат
dиссертация на соискание ученой степени
кандидата геолого-минералогических наук

ЛЕНИНГРАД
1963
Юрские отложения повсеместно распространены вдоль восточного склона Правобережного и Полярного Урала от 62° до 67° с. ш.

В нижней части разреза юры залегает сравнительно мощная толща угленосных осадков, перекрытая непрерывной морской серней верхнего оксфорда, кимериджа, нижнего и верхнего волжских ярусов. Уникальная насшенноность морских слоёв фауной моллюсков, брахиопод и фораминифер позволяет различить эти отложения и проводить корреляцию разрезов с высокой степенью детальности.

В результате изучения Уральской юры оказывается возможным создание весьма дробной стратиграфической схемы, которая может, для кимериджскских и нижневолжских отложений, явиться эталонной для всей северной части СССР. Эта схема является эталонной и для Западно-Сибирской низменности, позволяя надежно привязывать к разрезу разрозненные находки фауны, встреченные в кере глубоких скважин.

Уральская юра даст первый на территории СССР полный разрез нижнего волжского яруса с фауной Гренландского типа. Имел в то же время ряд общих черт с нижневолжской фауной Печорской синеклизы, фауна Уральской юры является важнейшим связующим звеном между фауной Русской платформы и северо-западной Европы, и немыслим значительной уточняет межпроявленческие корреляции и палеогеографические реконструкции.

Наконец, фауна Уральской юры содержит многие формы еще не описанные в описательной литературе, но широко распространенные на севере (многие виды Dorosplanites, Laugeites, Pectinatites, Subdichotomoceras), а также ряд совершенно новых форм (Eospheinctoceras gen. nov.) распространеня которых, по-видимому, также весьма широко. Кроме того, очень разноморская надшенноность аммоинитами всего разреза верхнеюрских отложений позволяет выделить и те горизонты, которые не охарактеризованы фауной в наиболее полных разрезах Арктики (Хатангская и Усть-Енисейская апа-
дина), что делает Уральскую юру чрезвычайно важной при составлении сводного разреза Арктической провинции.

Юрские отложения на восточном склоне Северного Урала были открыты экспедицией Г. Я. Стратежевского в 1832—34 гг. В 1840 г. Леопольд фон Бих просмотрел палеонтологические сборы Стратежевского и отнес выделяемую эту фауну к юрской породе. Впоследствии, исследования юрских отложений занимались Е. С. Федоров, К. Д. Ноилов, П. Г. Пономарев, А. Д. Гризнов, палеонтологические сборы которых изучали А. д'Орбини, Эйхальдом и С. Н. Никитным. Первая схема стратиграфии мезозоя была составлена Е. С. Федоровым, А. П. Павлов (1902) впервые отметил сходство юрской и западно-европейской фауны и выделил ряд зон портланд. Д. И. Иловайский (1904, 1906, 1917) значительно уточнил схему Е. С. Федорова, выделил ряд зон в отложениях портланд и описал некоторые виды юрских аммонитов, объединенные им в новый род Pavlovia. После Великой Октябрьской революции, мезозой восточного склона Приполярного и Полярного Урала изучался А. Н. Аleshковым, С. Ф. Машковцевым и Н. А. Сиряпин. В. И. Бодылевский (1940, 1944) разработал детальную зональную схему стратиграфии юры, которая явилась основой всех последующих исследований и сохраняет свое значение до настоящего времени.

В послевоенный период наибольшее значение имели работы Н. П. Михайлова, которым были выделены ряд уточнений в схеме В. И. Бодылевского и произведена привязка зон к частным разрезам, и В. А. Лидера, составившего геологическую карту района, детально расчлененного угленосных отложений и выделяющего маркирующий горизонт на границе нижнего и верхнего кимериджа. Изучением юрских отложений рассматриваемого района занимались также П. Ф. Ли и Г. И. Вялухин. Некоторые кимериджские аммониты описаны Н. Т. Сазоновым (1958).

Автор изучал юру Урала в 1954—58 гг. В результате была разработана детальная схема зональной стратиграфии, которая явилась основой унифицированной схемы верхнего оксфорда, кимериджа и волжских ярусов Западно-Сибирской низменности, и произведена корреляция частных разрезов вдоль всего восточного склона Приполярного и Полярного Урала.

Микрофауна юрских отложений изучалась Л. Г. Данин и В. И. Романовой. Особенно важны работы Л. Г. Данина, которыми выделена в морских отложениях большое количество микрофаунистических горизонтов.

В пределах рассматриваемого района юрские отложения с размывом залегают на выходной поверхности палеозойской и отчетливо делятся на три генетические комплексы осадков:

1. Кора выветривания.
2. Угленосная толща (бати — келловий — нижний оксфорд).
3. Морские отложения (верхний оксфорд — кимеридж — нижний и верхний волжские ярусы).

На Приполярном Урале юрские отложения с размывом и выпадением верхних волжских ярусов (отсутствует фауна зоны Craspedites nodiger) перекрыты морскими слоями нижнего кимериджа. На Полярном Урале контакт юры и мела согласный.

Кора выветривания палеозойского фундамента представлена пестроцветными и бельми колонитовыми и мономориллонитовыми глинами, иногда с гнездами щебня и тонкими линзами песка и лесса, что указывает на неоднородные процессы переотложения и кратковременные условия нормального аллювиального осадконакопления в период ее формирования. Мощность коры выветривания составляет 5—35 м.

Угленосная толща нами, вслед за В. А. Лидером, расчленяется на три свиты — янычарскую, вольскую и пойменную. Причем нам удалось схему В. А. Лидера, предложенную им для бассейна р. Сев. Сосвы, протянуто по всей изучаемой территории вплоть до района ст. Обской г. Салехарда.

Янычарская свита представлена преимущественно грубообломочными породами (коклюмбаты, гравелиты, песчаники). В верхней части появляются прослои глин и малоощущенные пласты углей. Для свиты в целом характерна сравнительно высокая степень уплотнённости пород и зеленка, реже пеструговидные их окраски. Мощность янычарской свиты составляла 50—150 м.

Вольская свита сложена в основном гравелитами, песчаниками и алевритами с подчиненными прослоями глин и тонкими незначительными прослоями глин. Мощность ее составляет 70—120 м.

Оторинская свита представлена главным образом глинисто-алевритовыми породами с мощными пластами угля. На
Полярном Урале в кровле оторийской свиты появляется невичка песчаников. Мощность оторийской свиты 40—70 м.

Все свиты угленосной толщи содержат прослои известковых песчаников, глауконитовых песчаников и алевролитов, изредка — неопределенной остатки морской фауны, свидетельствующие о том, что их наложение происходило в условиях прибрежной равнины, неоднократно, но кратковременно, заливавшейся морем. Суммарная мощность угленосной толщи достигает 250 м на Приполярном Урале и превышает 270 м на Полярном Урале. Верхний возрастной предел угленосной толщи определяется по его повсеместному залеганию у подножием сляйсов с Ammodiscus uglucus, который условно отнесен к нижнему горизонту; нижний возрастной предел толщи — верх среднего юры (батский ярус?) — установлен по определениям скороб-пильцевого комплекса бат-келловейского облика.

Таким образом, угленосные отложения формировались в течение бата-келловской и нижнего оксфорда, причем по положению в разрезе, отчасти, по палеонтологической характеристике бат (?) — келловск (?) отнесеня яныш-шарская, а к нижнему оксфорду (?) — оторийская и тольская свиты.

Морские отложения верхнего оксфорда представлены преимущественно корницеватыми аргильтами и алевролитами, которые на юго-западе замещаются глауконитовыми песками, а на севере — серыми глинами нормального морского бассейна.

Начало позднеокскфордского времени знаменуется обширной трансгрессией моря, причем вначале установились условия несколько опресненного залива, затем середина часть Львынской впадины становилась частью обширного Арктического морского бассейна, и в конце позднего оксфорда режим морского бассейна нормальной солёности установился на всей территории рассматриваемого района. Во всех реках с геологической историей и палеонтологической характеристикой отложения верхнего оксфорда расчищаются на три части:

1. Горизонт с Ammodiscus uglucus, мощность 8—10 м. Этот горизонт условно сопоставляется нами по положению в разрезе с зоной Ameoboceras alternans, т. к. непосредственно выше горизонта встречен Ameoboceras cf. alternans (Buch).
2. Зона Ameoboceras alternans с фауной Ameoboceras alternans (Buch), A. cf. alternans (Buch), A. cf. tuberculato-
alternans (Nik.) и др., мощность 15—30 м. Эпизод же посредствует горизонты с Lenticulina solita и Recurvoides disputabilis и Trochammina omkenskis.

Суммарная мощность отложений верхнего оксфорда варьирует от 15 (пос. Усть-Манья) до 52 м (ст. Обская).

Морские отложения киммериджа постепенно представлены мощной толщой бейделллитовых сланцев с крупными известковистыми конкрециями и ракшшками, плоскими ракушками и известковистыми песками. К югу глины становятся более алевритовыми, и постепенно замещаются алевритами. Киммериджский век является временем максимального развития позднетриасовой трансгрессии моря, лишь в самом конце киммериджа намечаются некоторое отступание моря в южной части бассейна.

Богатая фауна моллюсков и фораминифер позволяет расширить рассматриваемые отложения на ю 8 зон и протянуть их по всей территории Львынской впадины.

Нижний киммеридж:

1. Зона Proraseinia hardyi с фауной Proraseinia hardyi Spath, P. bowenbanki Spath, P. spp., Raseinia cf. similis Spath, R. cf. inconstans Spath, R. sp. aff. R. inconstans Spacht, Pictoria sp. и др., мощность 0,5—5 м. В разрезах, лишенных фауны аммонитов, этой зоне соответствует верхняя часть горизонта с Ameoboceras multiformis и Trochammina minutissima.
2. Зона Pictoria evoluta с фауной Pictoria evoluta (Tornq.), P. sp. nov. (Bodyl.), P. spp., Pomerania spp., Raseinia aff. orbignyi (Tornq.), R. cf. borealis Spath, Ameoboceras (Amoeboites) ex gr. kitchini (Saff.) и др. По-видимому, из этой же зоны происходит и Pomerania ilovaiskii Sason. Мощность 20—25 м.
Верхний кимеридж:


5. Зона Aulacostephanus pseudomutabilis с фауной Aulacostephanus pseudomutabilis (Lor.), A. ex gr. pseudomutabilis (Lor.), A. eudoxus (Orb.), A. ex gr. eudoxus (Lor.), A. ex gr. undorac (Pavl.), Amoeboceras sp. и др., мощность 30—35 м. Зонам Aulacostephanus уо и A. pseudomutabilis соответствует горизонт с Prechondracina lopiensis.

6. Зона Virgatixiceras spp. с фауной Virgatixiceras spp., V. sp. ind. и др., мощность 3—5 м. Этой зоне соответствует горизонт с Lenticulina kamaensis.

Отложения кимериджа согласно залегают на верхнем оксфорде. Суммарная мощность кимериджских отложений достигает 100—120 м и на Пряполярном Урале и 36 м на Полярном Урале.

Морские отложения нижнего волжского яруса в южной части Ляхинской впадины представлены серыми сильно алевритовыми глинами, которые верх по разрезу сменяются слоистыми алевритами и, еще выше, — кварцево-глауконитовыми песчинками с обильной фауной лесицопод и брахиопод. К северу эти отложения замещаются монотонной толщей кварцево-глауконитовых алевритов с частицами четвертичными прессами и иллювиальными известняками, еще севернее алевритовая толща сменяется серыми алевритовыми глинами с фауной беляндитов и фораминифер. Обильная фауна аммонитов позволяет расчленить эти отложения на большое число горизонтов и зон:

1. Зона Gravesia (?) triplicata, охарактеризованная аммонитами Gravesia (?) triplicata sp. nov., Eosphinctoceras magna gen. et sp. nov., Eosphinctoceras magna gen. et sp. nov., E. sp. ind., E. gracilecuesta gen. et sp. nov., Torquatisshiphites aff. alterniplicatus (Waag.), Virgatixiceras (?) sp. nov. и др. Мощность 2—4 м.

2. Зона Subdichotomoceras suberassum с фауной Subdichotomoceras michailovi sp. nov. (в верхней части), S. grandis sp. nov., S. (Sphinctoceras) suberassum sp. nov., S. (Sphinctoceras) praenifatum sp. nov., S. (Sphinctoceras) irregularis sp. nov., S. (Sphinctoceras) spp., Aulacosphinctes (?) sp. ind., Subplanites sp., S. sp. ind., Eosphinctoceras gravesiforme gen. et sp. nov., E. aff. gravesiforme gen. et sp. nov. и др. Мощность 4—8 м.

3. Зона Pectinatites lideri с аммонитами Pectinatites aff. pyriticus Neav., P. sp. ind., P. (Keratoites) lideri sp. nov., P. (Keratoites) aff. devillei (Lor.), P. (Keratoites) aff. boidini (Lor.), Pavlovia (Paravirgatiss) sp. ind., P. (Paravirgatiss) sp. juv. и др. Мощность 5—10 м.


5. Зона Strajejkveva strajejkveyi с аммонитами Strajejkveva strajejkveyi (Ilov.), S. hoffmanni (Ilov.), S. hypophalliformis Michailov, Pavlovia (Lystratiites) sp. nov., P. (Pallaciscera) hypophalliformes Ilov. em Michailov, P. (Pallaciscera) raricostata Ilov. em Michailov, P. (Pallaciscera) aff. iatriensis Ilov., Dorsoplanites antiquus Spath. Мощность 4—6 м.


8. Зона Crenodontites spp. с фауной Crenodontites subesles sp. nov., C. cf. subregulares Spath, C. sp., Parispinctes sp. Мощность 4 м.


10. Зона Laugellea (?) vogulicus с аммонитами L. (?) vogulicus (Ilov.) em Mesezhnikov, L. aff. borealis sp. nov., L. biculcatus sp. nov. (редко). Мощность 4 м.
Нижневолжские отложения согласно залегают на кимериджик, мощность их варьирует от 15 до 68 м.
Морские отложения верхнего волжского яруса представлены оолитовыми железными рудами в южной части района, к северу они замещаются известковистыми алевритами и, снизу тами сильно алевритовыми глинами, а на Полярном Урале представлены серыми алевритовыми глинами.
По фауне аммонитов отложения верхнего волжского яруса расчленяются на две зоны:
1. Зона Craspedites okensis, мощность 4—5 м.
2. Зона Kachpurites fulgeris, мощность 10—12 м.
Верхневолжские отложения составляют характерный горизонт с башенковидными радиоляриями.
Верхневолжские отложения согласно залегают на нижневолжских и с размывом (в выпадении из разреза зоны Craspedites nodiger) перекрыты отложениями валахнита. На Полярном Урале контакт ямы и мела, по-видимому, сглажен.
Суммарная мощность рассматриваемых осадков составляет 14—17 м.
В палеонтологической части работы описаны аммониты верхнего кимериджа и нижнего волжского яруса. За время работ на досточном склоне Урала было собрано свыше 350 аммонитов, значительную часть их сборов составляют аммониты нижнего волжского яруса. Описанные в настоящей работе хранятся в Музее ВНИГРИ (колл. 633 и 634).
При описании аммонитов использована терминология, разработанная преимущественно отечественными палеонтологами (Д. И. Иловайским, В. И. Бодалевским, Г. Я. Крымгольцем, В. В. Друцем, Н. П. Михайловым и др.).
Описания следующих форм, принадлежащие к семейству Perispheinitidae Steinmann 1890:
Подсемейство Ataxicoceratinae Buckman 1921: Virgatixoece-
ras sp., V. sp. ind., V. (?) sp. nov.
Подсемейство Virgatospinitinae Spatth 1923: Subdicto-
omoceras mikhailov sp. nov., S. sp. ind., S. grandis sp. nov., S. (Scinteceras) pyriticus sp. nov., S. (S.) praeinflatum sp.
nov., S. (S.) subcrassum sp. nov., S. (S.) sp. ind., S. (S.) sp.
jv., S. (S.) sp. ind., S. (S.) sp. ind., Terciatispinocles aff. alterniplicatus (Waag.), Aulacospireceles (?) sp. ind., Pec-
tinaties aff. pyriticus Neav., P. sp. ind., P. (Keratinite) sp.
ind., P. (K) aff. boidini (Lor.), P. (K) aff. devillei (Lor.), P.
платформы и по-видимому Сибири и зонам Perisphinctes outhismigae и Decipita decipiens северо-западной Европы.

Зона Ringsteadia marstonensis является аналогом зоны R. pseudocoordata северо-западной Европы, на Русской платформе же отвечают слои с Amoeboeceras novosselskense (Davit.) и Ringsteadia (Давитышвили 1923). Восточнее Урала аналоги этой зоны неизвестны.

Кимеридж. Зоны P horasenia hardyi и Pictoria evoluta являются аналогами зоны Pictoria baylei северо-западной Европы и слоев с Pictoria, развитых на Таймыре. На Русской платформе нижний кимеридж на зоны не разделяется. Prorasenia приурочено к основанию кимериджа только на Урале и, может быть, в Западно-Сибирской низменности, вследствие чего зона P. hardyi имеет узкое местное распространение.

Зона Rasenia uralensis сопоставляется с зоной R. cypodoce северо-западной Европы, и со слоями с Rasenia Северной Сибири.

Зона Aulacostephanus уо пока не находят аналогов в пределах Русской платформы. В Западной Европе с этой зоей, по-видимому, можно сопоставлять зону Pararasenia multisulcata и, возможно, нижнюю часть зоны Aulacostephanus pseudomutabilis (зона A. уо Залъфельда).

Предположительно зона Aulacostephanus уо Урала сопоставляется со слоями с Amoeboeceras decipiens и A. sokolovi Северной Сибири и Гренландии.

Зона Aulacostephanus pseudomutabilis параллелизуется с однимименной зоей северо-западной Европы и Русской платформы.

Зона Virgatixioceras spp. содержит аммониты рода Virgatixioceras более сходные с формами из бас. Урала, чем с баварскими аммонитами. Поэтому мы допускаем, что зона V. illaix Русской платформы распространяется и до восточного склона Приполярного Урала, что вполне-вероятно, если учитывать сходство всех верхнекимериджской фауны рассма-
триваемого района и Русской платформы.

Нижний волжский ярус. Зона Gravesia (??) triplicata, охарактеризованная фауной Gravesia (??) triplicata sp. nov. и Eosphinctoceras spp. (формы промежуточные между Gravesia и Subichroformoceras) сопоставляется с зонами G. gravesiana и G. gigas северо-западной Европы. На Русской платформе этой зои, по-видимому, соответствует нижняя часть астенического горизонта с Gravesia и Subplanites ex gr. sokolovii (Михайлов 1961).

Зона Subichroformoceras subcrassum, заключающая фауну Subichroformoceras и Subplanites сопоставляется с зонами Subplanites wheatleyensis и S. spp. северо-западной Европы и с верхней частью зои S. sokolovii Русской платформы. Зоо с Subplanites и Subichroformoceras установлены также в Северной Сибири и в Призереоидном протеоге.

Зона Pectinatites laceratus коррелируется с зоной Pectinatites pectinatus северо-западной Европы и ее аналогами в восточной Гренландии. На Русской платформе аналог этих отлож-
ний является зона Subplanites pseudoscyntica. Слой с Pec-
tinatites установлен в Халтагской впадине (Шульгина 1957).

Зона Pavlovia iatriensis сопоставляется с нижней частью Pallasiceras beds восточной Гренландии и, таким образом, с зоной Pavlovia rotunda северо-западной Европы.

Зона Strajeveskya strajeveskii содержит формы Pavlovia чрезвычайно близкие к аммонитам зоны Pavlovia pallasioidei и, по-видимому, может сопоставляться с ее нижней частью.

Зона Dorsoplanites ilovaiensis сопоставляется по находкам Dorsoplanites и Pavlovia s. str. с нижней частью глауконито-
вой серии Гренландии и с верхами зои Pavlovia pallasioidei северо-западной Европы.

Зона Dorsoplanites maximus отвечает верхней части глау-
конитовой серии восточной Гренландии и сопоставляется ус-
ловно с зоной Zaraikites albanii Англии.

Перечисленные зои (Pavlovia iatriensis, Strajeveskya strajeveskii, Dorsoplanites ilovaiensis и D. maximus) являются аналогами зои Zaraikites scynticus Русской платформы. Следует отметить, что, как и на Урале, в Гренландии, на Севере Сибири (Басов, Месехников, Ронкина, Саакс, Шульгина, 1982) и в Печорской синеклизе (Бодылевский 1949) намечаются две зоо с Dorsoplanites.

Зона Crenodonites spp. отвечает слоям с Crenodonites восточ-
ной Гренландии и зои C. gorei северо-западной Европы. По-видимому, именно с этой зоей должны параллелопароваться зои Virgatites virginus и V. rosanovi Русской платформы. Восточнее Урала аналоги этих отложений пока не установле-
ны.

Зона Laugieres borealis и L. (?) vogulicus сопоставляются с зоной Epivirgatites nikitini Русской платформы и с зоной Titanites giganteus северо-западной Европы.

Верхний волжский ярус. Отложения верхнего волжского яруса Урала сопоставляются с зонами Kachipirites hilgensi и Cisapedites subtilis Русской платформы (Бодылевский 1944).
Приведенные материалы позволяют установить, что в позднем оксфорде район восточного склона Приполярного и Полярного Урала имел непосредственную связь с морями Русской платформы и Арктики. В самом конце оксфорда и раннем кимеридже связь с Русской платформой нарушается; напротив, в верхнем кимеридже рассматриваемый участок изолируется от Арктического бассейна и вновь соединяется с морем Русской платформы. В раннем волжском веке утрачивается почти нацело связь с Русской платформой и восстанавливается пролив, соединяющий Зауралье с морями Западной Арктики. Наконец, в позднем волжском веке восточный склон Урала вместе с Новой Землей являются частями бассейна непосредственно связанного с морем Русской платформы, хотя местоположение пролива, соединяющего эти бассейны, в настоящее время установить невозможно.

Чрезвычайно интересной особенностью изученной фауны является резкая смена комплексов головоногих моллюсков, отмечаемая на границах некоторых зон. Так, например, коренное изменение комплексов отмечается между зонами subcrassum и lideri, ilovaiskii и maximus, Crenodonites pr. и borealis. Если учесть, что в течение раннего волжского века терри-тория восточного склона Приполярного и Полярного Урала представляла собой узкий морской залив (Балаба́нова, Га-lernen, Лидер, Месе́жников и др. 1959), заметно изолированный от миграций фауны с севера и с северо-востока, то подобные изменения в составе фауны можно объяснить лишь наличием скрытых перерывов, которые имели место при сохранении морских условий (режессия) и не отражаются в разрезах.

Автор искренне признателен своему учителю В. И. Бодылевскому, Н. П. Михайлову, В. Д. Налижнику и Н. Г. Чочиа за постоянную помощь в работе.

Работы автора, опубликованные по теме диссертации:


5. Месе́жников М. С. — Об объеме нижнего волжского яруса и его сибирских эквивалентах. Геология и геохимия 3 (IX), стр. 183—189, 1960.


8. Месе́жиков М. С. — Аммониты Gravesia на восточном склоне Приполярного Урала. Тр. ВНИГРИ, Геол. сб. 8, (в печати).